pyDynaMapp.trajectory package

Submodules

pyDynaMapp.trajectory.fourier module

class pyDynaMapp.trajectory.fourier.FourierGenerator(trajectory_params: dict)[source]

Bases: object

Base class for peroidic trajectories generation.

Ref:

Fourier-based optimal excitation trajectories for the dynamic identification of robots Kyung.Jo Park - Robotica - 2006.

computeConstraintedDifferentiationError(ti: float, tf: float, x, q0=None, qp0=None, qpp0=None)[source]
computeDifferentiationError(ti: float, tf: float, x, q0=None, qp0=None, qpp0=None)[source]
computeFullTrajectory(ti: float, tf: float, q0=None, qp0=None, qpp0=None)[source]

Computes the full trajectory data between ti and tf

computeProba(eps_n, J_n, bound)[source]
computeTrajectoryCriterion(ti: float, tf: float, x, q0=None, qp0=None, qpp0=None) float[source]

Compute the trajectory identification criteria. The criteria mesures how the target x parmters changes du to a variation in W or in mesured torques for a linear or /linearized system τ ≈ W(q,qp,qpp,x0)x we use the Gramian matrix in calculations WTW wich is sysmetric square the cond number expressed as lamdamax/lamdmin.

computeTrajectoryError(x, tspan, new_traj_params=None, q0=None, qp0=None, qpp0=None, verbose=False)[source]
computeTrajectoryIdentifiability(ti, tf, torque, q, qp, qpp, x)[source]

Evaluate the regression criteria ε(qi, qpi, qppi, x) based on a given trajectory.

This function computes the regression criteria for a fixed system parameter vector x and a trajectory C(qi, qpi, qppi) computed previously. The trajectory is considered identifiable if the criteria is minimal for most of the time steps.

Args:

qi: Generalized position coordinates of the trajectory. qpi: Generalized velocity coordinates of the trajectory. qppi: Generalized acceleration coordinates of the trajectory. x: Fixed system parameter vector.

Returns:

Regression criteria value ε for the given trajectory and system parameters.

Notes:
  • The trajectory is identifiable if ε remains minimal over most time steps.

  • TODO:

Investigate the relationship between the regression criteria evolution and

the trajectory C over time t.

computeTrajectoryState(t: float = 0, q0=None, qp0=None, qpp0=None)[source]

Computes the trajectory states at time date t

save2csv(ti: float, tf: float, file_path, q0=None, qp0=None, qpp0=None)[source]

compute a given trajectory and save it to csv file.

visualizeTrajectory(ti, tf, q0=None, qp0=None, qpp0=None, savePath=None)[source]

Compute and plot a given trajectory, each variable in a single plot

visualizeTrajectoryIdentifiability(ti, tf, torque, q, qp, qpp, x)[source]

Visualize the trajectory identifiability criteria

modeled by the probobilty function: f(x) = P( abs((ε - εm)/σε) < 0.05 || abs((J - Jm)/σJ) < x) where x > 0

pyDynaMapp.trajectory.spline module

class pyDynaMapp.trajectory.spline.SplineGenerator(trajectory_params)[source]

Bases: object

computeFullTrajectory(ti: float, tf: float, q0=None, qp0=None, qpp0=None)[source]

Computes the full trajectory between ti and tf.

computeTrajectoryConstraints(qmax, qmin, qpmax, qpmin, qppmin, qppmax, ti, tf, q0=None, qp0=None, qpp0=None)[source]

Ensures trajectory meets specified constraints.

computeTrajectoryIdentifiability()[source]

Evaluates the regression criteria ε(q, qp, qpp, x).

computeTrajectoryState(t, Q0=None) numpy.ndarray[source]

Computes the trajectory states at time t.

saveTrajectory2file(filename='trajectory.txt')[source]

Saves the computed trajectory to a file.

visualizeTrajectory(ti, tf, Q0=None, Qp0=None, Qpp0=None)[source]

Visualizes the computed trajectory.

pyDynaMapp.trajectory.trajectory module

class pyDynaMapp.trajectory.trajectory.TrajectoryGenerator(ndof=7, sampling=1000, ti=0, tf=1000)[source]

Bases: object

Base class for general tarjectory motion generation. it uqses polynomail Args:

  • ndof - robot degree of freedom

  • sampling - sampling time-genration frequancy

nbWaypoints - number of genated pointed of the trakejctory

plotTrajectory() None[source]
setTrajectoryData(time, Q, Qp, Qpp) None[source]

pyDynaMapp.trajectory.trapezoidal module

class pyDynaMapp.trajectory.trapezoidal.TrapezoidalGenerator(njoints, nwaypoints, acc, delta_t1, delta_t2, Nf)[source]

Bases: object

Base class for trapezoidal trajectories generation Args:

  • njoints number of joints

  • nwaypoints number of waypoints

    acceleration values accelerated durations vel constant durations runtime

Output:

q, qd, qdd

TrapezoidalGenerator()[source]
initConfig()[source]
trapTraj_PTP(a1, q0, n1, n2, N)[source]
visualizeTrajectory()[source]

Module contents