pyDynaMapp.viscoelastic package
Submodules
pyDynaMapp.viscoelastic.backlash module
pyDynaMapp.viscoelastic.cuLugre module
pyDynaMapp.viscoelastic.dahl module
- class pyDynaMapp.viscoelastic.dahl.Dahl(sigma0, Fs, time_step=0.001)[source]
Bases:
object
Dahl friction Model class base definition. The friction force is a hysteresis function, without memory of the x Args:
sigma0: Constant coefficient
Fs : Stribeck force coefficient
pyDynaMapp.viscoelastic.lugre module
- class pyDynaMapp.viscoelastic.lugre.LuGre(Fc, Fs, v, sigma0, sigma1, sigma2, tspan, ts=0.001, tinit=0, z0=0.01, vs=0.1235)[source]
Bases:
object
Class to compute LuGre Friction Model
- Params:
Fc (float): Coulomb friction coefficient.
Fs (float): Stribeck friction coefficient.
v (float): Joint velocity.
vs (float): Kinetic velocity transition.
sigma0 (float): Model parameter sigma0.
sigma1 (float): Model parameter sigma1.
sigma2 (float): Model parameter sigma2.
tinit (float): Initial simulation time.
ts (float): Step time simulation.
tspan (float): Final simulation time.
z0 (float): Initial value of internal state z.
pyDynaMapp.viscoelastic.maxwell module
- class pyDynaMapp.viscoelastic.maxwell.Maxwell(sigma0: float, eta: float, E: float)[source]
Bases:
object
Maxwell-Voight contact model class.
- Args:
sigma0 (float): Initial stress value. eta (float): Viscosity parameter. E (float): Elastic modulus.
pyDynaMapp.viscoelastic.maxwell_slip module
- class pyDynaMapp.viscoelastic.maxwell_slip.MaxwellSlip(n, velocity: numpy.ndarray, k, c, sigma0, samplingRate=1000)[source]
Bases:
object
MaxwellSlip - Compute Maxwell Slip Friction Model.
- Inputs:
n - Number of Maxwell elements. velocity - Velocity (m/s) k - Stiffness of Maxwell elements (N/m) c - Damping coefficients of Maxwell elements (Ns/m) sigma0 - Static friction force (N) samplingRate- Sampling rate (Hz)
- Returns:
t - Simulation time vector. F - Friction Force for the given velocity
Note:
- Ref:
Fundamentals Of Friction Modeling - Farid Al-Bender - 2010.
pyDynaMapp.viscoelastic.viscous module
- pyDynaMapp.viscoelastic.viscous.computeViscousFrictionForce(V, Fc, Fs)[source]
Compute the Coulomb and viscous friction model.
Parameters: V (numpy array): Velocity array. Fc (float or numpy array): Coulomb friction coefficient. Fs (float or numpy array): Viscous friction coefficient.
- Returns:
numpy-array: Friction force array.
Module contents
- class pyDynaMapp.viscoelastic.Dahl(sigma0, Fs, time_step=0.001)[source]
Bases:
object
Dahl friction Model class base definition. The friction force is a hysteresis function, without memory of the x Args:
sigma0: Constant coefficient
Fs : Stribeck force coefficient
- class pyDynaMapp.viscoelastic.LuGre(Fc, Fs, v, sigma0, sigma1, sigma2, tspan, ts=0.001, tinit=0, z0=0.01, vs=0.1235)[source]
Bases:
object
Class to compute LuGre Friction Model
- Params:
Fc (float): Coulomb friction coefficient.
Fs (float): Stribeck friction coefficient.
v (float): Joint velocity.
vs (float): Kinetic velocity transition.
sigma0 (float): Model parameter sigma0.
sigma1 (float): Model parameter sigma1.
sigma2 (float): Model parameter sigma2.
tinit (float): Initial simulation time.
ts (float): Step time simulation.
tspan (float): Final simulation time.
z0 (float): Initial value of internal state z.
- class pyDynaMapp.viscoelastic.MaxwellSlip(n, velocity: numpy.ndarray, k, c, sigma0, samplingRate=1000)[source]
Bases:
object
MaxwellSlip - Compute Maxwell Slip Friction Model.
- Inputs:
n - Number of Maxwell elements. velocity - Velocity (m/s) k - Stiffness of Maxwell elements (N/m) c - Damping coefficients of Maxwell elements (Ns/m) sigma0 - Static friction force (N) samplingRate- Sampling rate (Hz)
- Returns:
t - Simulation time vector. F - Friction Force for the given velocity
Note:
- Ref:
Fundamentals Of Friction Modeling - Farid Al-Bender - 2010.