pyDynaMapp.trajectory package
Submodules
pyDynaMapp.trajectory.fourier module
- class pyDynaMapp.trajectory.fourier.FourierGenerator(trajectory_params: dict)[source]
Bases:
object
Base class for peroidic trajectories generation.
- Ref:
Fourier-based optimal excitation trajectories for the dynamic identification of robots Kyung.Jo Park - Robotica - 2006.
- computeConstraintedDifferentiationError(ti: float, tf: float, x, q0=None, qp0=None, qpp0=None)[source]
- computeFullTrajectory(ti: float, tf: float, q0=None, qp0=None, qpp0=None)[source]
Computes the full trajectory data between ti and tf
- computeTrajectoryCriterion(ti: float, tf: float, x, q0=None, qp0=None, qpp0=None) float [source]
Compute the trajectory identification criteria. The criteria mesures how the target x parmters changes du to a variation in W or in mesured torques for a linear or /linearized system τ ≈ W(q,qp,qpp,x0)x we use the Gramian matrix in calculations WTW wich is sysmetric square the cond number expressed as lamdamax/lamdmin.
- computeTrajectoryError(x, tspan, new_traj_params=None, q0=None, qp0=None, qpp0=None, verbose=False)[source]
- computeTrajectoryIdentifiability(ti, tf, torque, q, qp, qpp, x)[source]
evaluates the rgression criteria ε(qi,qpi,qppi,x) , en fonction du trajectory certain computed pervoiously C(qi,qpi,qppi) for fixed x system paramter vector : > the traj is identificable if the crietria is minimal in the most of time steps TODO : find the rlation betwen the rgression crirtia evolution and the trajectory C over time t
- computeTrajectoryState(t: float = 0, q0=None, qp0=None, qpp0=None)[source]
Computes the trajectory states at time date t
- save2csv(ti: float, tf: float, file_path, q0=None, qp0=None, qpp0=None)[source]
compute a given trajectory and save it to csv file.
pyDynaMapp.trajectory.spline module
- class pyDynaMapp.trajectory.spline.SplineGenerator(trajectory_params)[source]
Bases:
object
- computeFullTrajectory(ti: float, tf: float, q0=None, qp0=None, qpp0=None)[source]
Computes the full trajectory between ti and tf.
- computeTrajectoryConstraints(qmax, qmin, qpmax, qpmin, qppmin, qppmax, ti, tf, q0=None, qp0=None, qpp0=None)[source]
Ensures trajectory meets specified constraints.
pyDynaMapp.trajectory.trajectory module
- class pyDynaMapp.trajectory.trajectory.TrajectoryGenerator(ndof=7, sampling=1000, ti=0, tf=1000)[source]
Bases:
object
Base class for general tarjectory motion generation. it uqses polynomail Args:
ndof - robot degree of freedom
sampling - sampling time-genration frequancy
nbWaypoints - number of genated pointed of the trakejctory
pyDynaMapp.trajectory.trapezoidal module
- class pyDynaMapp.trajectory.trapezoidal.TrapezoidalGenerator(njoints, nwaypoints, acc, delta_t1, delta_t2, Nf)[source]
Bases:
object
Base class for trapezoidal trajectories generation Args:
njoints number of joints
nwaypoints number of waypoints
acceleration values accelerated durations vel constant durations runtime
- Output:
q, qd, qdd