trajectory module

class dynamapp.trajectory.Trajectory(n: int, sampling: int, ti: float, tf: float)[source]

Bases: ABC

Base class for trajectory motion generation.

abstract get_value(t: float)[source]
abstract compute_with_constraints(qmin, qmax, qpmin, qpmax, qppmin, qppmax)[source]
abstract compute_full_trajectory()[source]
class dynamapp.trajectory.SplineTrajectory(ndof, sampling, ti, tf, control_points)[source]

Bases: Trajectory

Spline-based trajectory.

Todo

Implement the compute_with_constraints function

get_value(t: float)[source]
compute_full_trajectory()[source]
compute_with_constraints(qmin, qmax, qpmin, qpmax, qppmin, qppmax)[source]
class dynamapp.trajectory.TrapezoidalTrajectory(n, sampling, ti, tf, q0, qf, acc, vel)[source]

Bases: Trajectory

Trapezoidal velocity profile trajectory.

Todo

Implment the compute_with_constraints function

get_value(t: float)[source]
compute_full_trajectory()[source]
compute_with_constraints(qmin, qmax, qpmin, qpmax, qppmin, qppmax)[source]
class dynamapp.trajectory.PeriodicTrajectory(n, sampling, ti, tf, frequency, Aij, Bij, nb_terms)[source]

Bases: Trajectory

Periodic trajectory based on Fourier series.[1]

Todo

Implment the compute_with_constraints function

Ref:
  • [1] Fourier-based optimal excitation trajectories for the dynamic

identification of robots, Kyung.Jo Park - Robotica - 2006.

get_value(t: float)[source]
compute_full_trajectory()[source]
compute_with_constraints(qmin, qmax, qpmin, qpmax, qppmin, qppmax)[source]
class dynamapp.trajectory.StepTrajectory(ndof, sampling, ti, tf, epsilon, amplitude)[source]

Bases: Trajectory

Step trajectory with fixed small duration epsilon and given amplitude.

Todo

Implment the compute_with_constraints function

get_value(t: float)[source]
compute_full_trajectory() jax.numpy.array[source]
compute_with_constraints(qmin, qmax, qpmin, qpmax, qppmin, qppmax)[source]